最終更新日時:
が更新

履歴 編集

function
<cmath>

std::atan2

namespace std {
  float atan2(float y, float x);
  double atan2(double y, double x);
  long double atan2(long double y, long double x);

  Promoted atan2(Arithmetic1 y, Arithmetic2 x);     // C++11 から

  float atan2f(float y, float x);                   // C++17 から
  long double atan2l(long double y, long double x); // C++17 から
}

概要

算術型の逆正接(アークタンジェント)を対辺と隣辺から求める。

このような三角形があった場合、辺yの長さと辺xの長さをatan2()関数に与えることで、角度θがラジアン単位として求まる。

戻り値

y / x の逆正接を [-π, π] の範囲で返す。(単位はラジアン)

象限は引数の符号から適切に求められる。

yxの両方が値0である場合に定義域エラーとなる可能性がある。定義域エラーが発生した場合、戻り値は処理系定義である。(備考参照)

備考

  • $$ f(y, x) = \mathrm{Arctan}~\frac{y}{x} $$

    引数の順番に注意されたし。

  • 定義域エラーが発生した場合の挙動については、<cmath> を参照。

  • C++11 以降では、処理系が IEC 60559 に準拠している場合(std::numeric_limits<T>::is_iec559() != false)、以下の規定が追加される。(複号同順)

    • y = ±0x < 0 または x = -0 の場合、戻り値は ±π となる。
    • y = ±0x > 0 または x = +0 の場合、戻り値は ±0 となる。
    • y > 0x = ±0 の場合、戻り値は +π/2 となる。
    • y < 0x = ±0 の場合、戻り値は -π/2 となる。
    • 0 < z < +∞ とすると、y = ±zx = -∞ の場合、戻り値は ±π となる。
    • 0 < z < +∞ とすると、y = ±zx = +∞ の場合、戻り値は ±0 となる。
    • y = ±∞x が有限の値の場合、戻り値は ±π/2 となる。
    • y = ±∞x = -∞ の場合、戻り値は ±3π/4 となる。
    • y = ±∞x = +∞ の場合、戻り値は ±π/4 となる。

    特に、yx の両方がゼロの場合に定義域エラー(FE_INVALID(無効演算浮動小数点例外))となったり、y が非ゼロで x がゼロの場合に極エラー(FE_DIVBYZERO(ゼロ除算浮動小数点例外))となったりはしない事に注意。

#include <cmath>
#include <iostream>

int main() {
  std::cout << std::fixed;
  std::cout << "atan2(0.0, 1.0)   = " << std::atan2(0.0, 1.0) << std::endl;
  std::cout << "atan2(1.0, 1.0)   = " << std::atan2(1.0, 1.0) << std::endl;
  std::cout << "atan2(1.0, 0.0)   = " << std::atan2(1.0, 0.0) << std::endl;
  std::cout << "atan2(1.0, -1.0)  = " << std::atan2(1.0, -1.0) << std::endl;
  std::cout << "atan2(0.0, -1.0)  = " << std::atan2(0.0, -1.0) << std::endl;
  std::cout << "atan2(-1.0, -1.0) = " << std::atan2(-1.0, -1.0) << std::endl;
  std::cout << "atan2(-1.0, 0.0)  = " << std::atan2(-1.0, 0.0) << std::endl;
  std::cout << "atan2(-1.0, 1.0)  = " << std::atan2(-1.0, 1.0) << std::endl;
}

出力

atan2(0.0, 1.0)   = 0.000000
atan2(1.0, 1.0)   = 0.785398
atan2(1.0, 0.0)   = 1.570796
atan2(1.0, -1.0)  = 2.356194
atan2(0.0, -1.0)  = 3.141593
atan2(-1.0, -1.0) = -2.356194
atan2(-1.0, 0.0)  = -1.570796
atan2(-1.0, 1.0)  = -0.785398

バージョン

言語

  • C++03
  • C++11

処理系

  • Clang: 1.9, 2.9, 3.1
  • GCC: 3.4.6, 4.2.4, 4.3.5, 4.4.5, 4.5.1, 4.5.2, 4.6.1, 4.7.0
  • GCC, C++11 mode: 4.3.4, 4.4.5, 4.5.2, 4.6.1, 4.7.0
  • ICC: 10.1, 11.0, 11.1, 12.0
  • Visual C++ 7.1, 8.0, 9.0, 10.0

備考

特定の環境で constexpr 指定されている場合がある。(独自拡張)

  • GCC 4.6.1 以上

実装例

[-π/2, π/2] の範囲を返す atan があれば、引数の符号に応じて以下のように変換することで求められる。

$$ \mathrm{Arctan}~\frac{y}{x} = \begin{cases} \displaystyle \mathrm{Arctan}~\frac{y}{x} & \quad \mathrm{for} \; 0 \le x \\[2ex] \displaystyle \mathrm{Arctan}~\frac{y}{x} + \pi & \quad \mathrm{for} \; x < 0, \; 0 \le y \\[2ex] \displaystyle \mathrm{Arctan}~\frac{y}{x} - \pi & \quad \mathrm{for} \; x < 0, \; y < 0 \end{cases} $$