最終更新日時:
が更新

履歴 編集

function
<cmath>

std::pow

namespace std {
  float pow(float x, float y);
  double pow(double x, double y);
  long double pow(long double x, long double y);

  float pow(float x, int y);                      // C++03 まで
  double pow(double x, int y);                    // C++03 まで
  long double pow(long double x, int y);          // C++03 まで

  Promoted pow(Arithmetic1 x, Arithmetic2 y);     // C++11 から

  float powf(float x, float y);                   // C++17 から
  long double powl(long double x, long double y); // C++17 から
}

概要

xy 乗を求める。

戻り値

xy 乗した値を返す。

x が負の有限値で y が有限値でかつ整数ではない場合には、定義域エラーが発生する。オーバーフローエラー、アンダーフローエラーが発生する可能性がある。xy が両方ともゼロの場合には、定義域エラーが発生する可能性がある。x がゼロで y がゼロ未満の場合には、定義域エラーか極エラーが発生する可能性がある。

備考

  • $$ f(x, y) = x^y $$
  • 定義域エラー、極エラー、オーバーフローエラー、アンダーフローエラーが発生した場合の挙動については、<cmath> を参照。
  • C++11 以降では、処理系が IEC 60559 に準拠している場合(std::numeric_limits<T>::is_iec559() != false)、以下の規定が追加される。(複号同順)
    • x = ±0y が負の奇数の場合、戻り値は ±∞ となり、FE_DIVBYZERO(ゼロ除算浮動小数点例外)が発生する。
    • x = ±0y が有限でかつ負の奇数ではない場合、戻り値は +∞ となり、FE_DIVBYZERO(ゼロ除算浮動小数点例外)が発生する。
    • x = ±0y = -∞ の場合、戻り値は +∞ となり、FE_DIVBYZERO(ゼロ除算浮動小数点例外)が発生する可能性がある。
    • x = ±0y が正の奇数の場合、戻り値は ±0 となる。
    • x = ±0y が正でかつ奇数ではない場合、戻り値は +0 となる。
    • x = -1y = ±∞ の場合、戻り値は 1 となる。
    • x = 1 の場合、y にかかわらず戻り値は 1 となる(y が quiet NaN の場合を含む)。
    • y = ±0 の場合、x にかかわらず戻り値は 1 となる(x が quiet NaN の場合を含む)。
    • |x| < 1y = -∞ の場合、戻り値は +∞ となる。
    • |x| > 1y = -∞ の場合、戻り値は +0 となる。
    • |x| < 1y = +∞ の場合、戻り値は +0 となる。
    • |x| > 1y = +∞ の場合、戻り値は +∞ となる。
    • x = -∞y が負の奇数の場合、戻り値は -0 となる。
    • x = -∞y が負でかつ奇数ではない場合、戻り値は +0 となる。
    • x = -∞y が正の奇数の場合、戻り値は -∞ となる。
    • x = -∞y が正でかつ奇数ではない場合、戻り値は +∞ となる。
    • x = +∞y < 0 の場合、戻り値は +0 となる。
    • x = +∞y > 0 の場合、戻り値は +∞ となる。

#include <cmath>
#include <limits>
#include <iostream>

int main() {
  std::cout << std::fixed;
  std::cout << "pow(2.0, +∞)   = "
            << std::pow(2.0, std::numeric_limits<double>::infinity())
            << std::endl;
  std::cout << "pow(2.0, 2.0)  = " << std::pow(2.0, 2.0) << std::endl;
  std::cout << "pow(2.0, 1.0)  = " << std::pow(2.0, 1.0) << std::endl;
  std::cout << "pow(2.0, 0.5)  = " << std::pow(2.0, 0.5) << std::endl;
  std::cout << "pow(2.0, 0.0)  = " << std::pow(2.0, 0.0) << std::endl;
  std::cout << "pow(2.0, -0.5) = " << std::pow(2.0, -0.5) << std::endl;
  std::cout << "pow(2.0, -1.0) = " << std::pow(2.0, -1.0) << std::endl;
  std::cout << "pow(2.0, -2.0) = " << std::pow(2.0, -2.0) << std::endl;
  std::cout << "pow(2.0, -∞)   = "
            << std::pow(2.0, -std::numeric_limits<double>::infinity())
            << std::endl;
}

出力例

pow(2.0, +∞)   = inf
pow(2.0, 2.0)  = 4.000000
pow(2.0, 1.0)  = 2.000000
pow(2.0, 0.5)  = 1.414214
pow(2.0, 0.0)  = 1.000000
pow(2.0, -0.5) = 0.707107
pow(2.0, -1.0) = 0.500000
pow(2.0, -2.0) = 0.250000
pow(2.0, -∞)   = 0.000000

バージョン

言語

  • C++03
  • C++11

処理系

  • Clang: 1.9, 2.9, 3.1
  • GCC: 3.4.6, 4.2.4, 4.3.5, 4.4.5, 4.5.1, 4.5.2, 4.6.1, 4.7.0
  • GCC, C++11 mode: 4.3.4, 4.4.5, 4.5.2, 4.6.1, 4.7.0
  • ICC: 10.1, 11.0, 11.1, 12.0
  • Visual C++ 7.1, 8.0, 9.0, 10.0

備考

特定の環境で constexpr 指定されている場合がある。(独自拡張)

  • GCC 4.6.1 以上

実装例

exp および log があれば、以下のように変換することで求められる。

$$ x^y = e^{y \log_e x} $$

ただし x が負数かつ y が整数に等しい場合などについては、別に計算する必要がある。